
Week 7 - Monday



 What did we talk about last time?
 Socket programming
 IPv4 and IPv6 addressing











 DNS converts a host name to an IP address
 The getaddrinfo() function lets us get a linked list of 

matching addresses

 The only annoying bit is that we have to fill out a hints structure
 A utility function freeaddrinfo() is provided to free the 

linked list structure when done with it

int getaddrinfo (const char *name, const char *service,
const struct addrinfo *hints, struct addrinfo **results)

void freeaddrinfo (struct addrinfo *info);



 The result of getaddrinfo() is stored into the pointer 
given by the last argument

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
char *ai_canonname;
struct sockaddr *ai_addr;  // Pointer to address we need
struct addrinfo *ai_next;  // Pointer to next addrinfo in linked list

};



struct addrinfo hints, *server_list = NULL, *server = NULL;
memset (&hints, 0, sizeof (hints));
hints.ai_family = AF_INET;       // IPv4
hints.ai_socktype = SOCK_STREAM; // Byte-streams (TCP)
hints.ai_protocol = IPPROTO_TCP; // TCP
assert (getaddrinfo (hostname, "http", &hints, &server_list) == 0); // Get addresses

for (server = server_list; server != NULL; server = server->ai_next)
{

if (server->ai_family == AF_INET) // Only take IPv4
{

// Cast to IPv4 socket
struct sockaddr_in *addr = (struct sockaddr_in *)server->ai_addr;
printf ("IPv4 address: %s\n", inet_ntoa (addr->sin_addr));

}
}

freeaddrinfo (server_list);



 Here's a visualization of the addrinfo and sockaddr structs that might come back from getaddrinfo()

struct addrinfo

ai_flags …

ai_family AF_INET

ai_socktype SOCK_STREAM

ai_protocol IPPROTO_TCP

ai_addrlen 4

ai_canonname …

ai_addr

ai_next

struct addrinfo

ai_flags …

ai_family AF_INET6

ai_socktype SOCK_STREAM

ai_protocol IPPROTO_TCP

ai_addrlen 16

ai_canonname …

ai_addr

ai_next NULL

struct sockaddr_in

sin_family AF_INET

sin_port 80

sin_addr 93.184.216.34

sin_zero 0

struct sockaddr_in6

sin6_family AF_INET6

sin6_port 80

sin6_flowinfo …

sin6_addr
2606:2800:220:1:
248:1893:25C8:1946

sin6_scope_id …



 Adapt the code on 
the previous slide:
 Read a host or IP 

address from the user
 Read a service or port 

name from the user
 Print out the 

resulting IP addresses

Port Name Service Port Name Service

21 FTP Insecure file transfer 110 POP3 POP email access

22 SSH Secure shell 123 NTP Time synchronization

23 Telnet Insecure remote access 143 IMAP IMAP email access

25 SMTP Email delivery 194 IRC Internet chat service

53 DNS IP address lookup 389 LDAP Authentication

67 DHCP IP address assignment 443 HTTPS Secure web page

68 DHCP IP address assignment 530 RPC Remote procedure call

80 HTTP Web page 631 IPP Internet printing

88 Kerberos Authentication 993 IMAPS Secure IMAP access

Note the following common port names and services:



 After all the madness is done getting the sockaddr, a client 
can connect to a listening server with the connect()
function

 The connect() function is a blocking call that will 
eventually succeed or fail to connect the socket file descriptor 
to an actual network connection

 If successful, we can read and write from that file descriptor

int connect (int socket, const struct sockaddr *address, socklen_t address_len);



 The server side is more complicated
 It's useful to set some options on the socket using the (confusing) 
setsockopt() function

 Reusing the port, allowing reuse of the same port, even after crashing
 Timing out on read messages

 After creating the socket:

int setsockopt (int socket, int level, int option, const void *value, socklen_t lengeth);

//Allow port reuse
int on = 1;
setsockopt (socketfd, SOL_SOCKET, SO_REUSEADDR, (const void *) &on, sizeof (int));
// Set a 5-second timeout when waiting to receive
struct timeval timeout = { 5, 0 };
setsockopt (socketfd, SOL_SOCKET, SO_RCVTIMEO, (const void *) &timeout,

sizeof (timeout));



 After creating the server socket (and maybe setting options), 
the next step is to bind the server to a port

 For UDP, the server is then ready to receive messages
 For TCP, it has to listen on the socket 

 The backlog gives how many clients can queue up when trying to 
connect to the server

int bind (int socket, const struct sockaddr *address, socklen_t address_len);

int listen (int socket, int backlog);



 For TCP connections, after listening, the server can call 
accept()

 Blocking function
 Will wait until a client tries to connect
 Then, messages can be sent and received
 Doing so sets up a TCP session, expecting a series of packets from 

the connecting client

int accept (int socket, struct sockaddr *address, socklen_t *address_len);



socket()

bind()

listen()

accept()

recvfrom()

sendto()

close()

socket()

connect()

recvfrom()

sendto()

close()

Repeat until done

Server ClientTCP
Communication



socket()

bind()

recvfrom()

sendto()

close()

socket()

connect()

recvfrom()

sendto()

close()

Repeat until done

Server ClientUDP
Communication





 The biggest differences between single-machine and networked 
IPC:
 Networked IPC typically employs protocols so that machines agree on 

how data should be formatted
 Networked IPC is less reliable

 It's hard to talk about TCP communication without examples that 
use some particular application layer protocol

 We're going to use HTTP because:
 It's easy to understand
 It's really important
 There are lots of servers in the world we can talk to without any 

credentials



 Hypertext Transfer Protocol (HTTP) is 
the protocol for (non-encrypted) web 
page communication

 It's a request-response protocol
 Shown in the sequence diagram on the right

 HTTP itself is stateless: no information is 
preserved between requests

 Other features built around HTTP 
(cookies, server-side scripting, and 
databases) overcome this stateless 
limitation



 HTTP requests and responses start with header lines
 Each ends with CRLF (\r\n), with an extra CRLF after all headers
 Each \r\nwould simply look like a newline, but we show them below for clarity

 The most common client request is GET
 It must have a line like the following:

 path is the file being requested
 version is the HTTP version, usually 1.0, 1.1, or 2

GET /path HTTP/version\r\n

GET /index.html HTTP/1.0\r\n
Accept: text/html\r\n
Accept-Encoding: gzip, deflate, br\r\n
Accept-Language: en-US,en;q=0.5\r\n
User-Agent: Mozilla/5.0\r\n
\r\n





 Finish TCP socket programming
 UDP socket programming



 Finish Assignment 4
 Due tonight by midnight!

 Start on Project 2!
 Read section 4.5 and 4.6


	COMP 3400
	Last time
	Questions?
	Assignment 4
	Project 2
	Back to Sockets
	Getting addresses from a host name
	The addrinfo struct
	Getting address example
	Confusing structs!
	Programming practice
	Client side: connecting
	Server side: options
	Server side: binding and listening
	Server side: accepting
	Slide Number 16
	Slide Number 17
	TCP Socket Programming
	TCP communication
	HTTP
	Sample request
	Upcoming
	Next time…
	Reminders

